Tetrahedron 65 (2009) 5596-5607

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Practical and robust method for stereoselective preparations of ketene silyl (thio)acetal derivatives and NaOH-catalyzed crossed-Claisen condensation between ketene silyl acetals and methyl esters

Kenta Takai, Yuuya Nawate, Tomohito Okabayashi, Hidefumi Nakatsuji, Akira Iida, Yoo Tanabe*

Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

ARTICLE INFO

Article history: Received 15 December 2008 Received in revised form 19 February 2009 Accepted 20 February 2009 Available online 14 April 2009

ABSTRACT

We developed an efficient, practical, and robust method for stereoselective preparations of (*Z*)ketene trimethylsilyl (TMS) thioacetals from thioesters and alkyl (1*Z*)- or (1*Z*,3*E*)-1,3-bis(TMS)dienol ethers from alkyl β -ketoesters. The former preparation was performed by convenient procedure (LDA–TMSCl, 0–5 °C, 2.5 h), while the latter preparation involved convenient method A (2NaHMDS–2TMSCl) and cost-effective method B (NaH, NaHMDS–2TMSCl). The first catalytic NaOH-catalyzed crossed-Claisen condensation between ketene silyl acetals and methyl esters proceeded successfully to give a variety of α -monomethyl β -ketoesters and inaccessible α, α disubstituted β -ketoesters. For further extension, a couple of Claisen-aldol tandem reactions of the obtained β -ketoester analogues utilizing TiCl₄ and TiCl₄–Bu₃N reagents smoothly proceeded with good to excellent stereoselectivity.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Ketene silyl acetals (KSAs) as well as enol silyl ethers are widely employed as reactive precursors of carboxylic esters in a broad range of organic syntheses, e.g., the Mukaiyama aldol and Michael reactions, the Diels–Alder reaction, Ireland–Claisen rearrangement, etc.¹ The most conventional preparations of these silyl ethers from ketones and aldehydes use an R₃SiCl(*or* OTf)– amine (e.g., Et₃N) or R₃SiCl–amide (e.g., LDA) agent. We previously described the first catalytic base-promoted preparation of enol silyl ethers; NaH functioned for ketones and DBU did for aldehydes (Scheme 1).² Recently, a practical and robust method

Scheme 1. Base-catalyzed preparation of enol silyl ethers from ketones and aldehydes.

* Corresponding author. E-mail address: tanabe@kwansei.ac.jp (Y. Tanabe).

0040-4020/\$ - see front matter \otimes 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.02.084

for regio- and stereoselective preparation of (*E*)-TMS-KSAs and β -ketoester-derived *tert*-butyl (1*Z*,3*E*)-1,3-bis(TMS)dienol ethers was reported (Scheme 2).³ As a synthetic application of these silyl enolates, methyl and *tert*-butyl ester-derived KSAs were utilized for the first base-catalyzed crossed-Claisen condensation with simple methyl esters (Scheme 3).⁴

In connection with these topics, we present herein three subjects: (i) a new practical preparation of relevant (*Z*)-ketene silyl thioacetals (KSTAs), (ii) that of alkyl (1*Z*)- or (1*Z*,3*E*)-1,3-bis(TMS)-dienol ethers, (iii) full details of NaOH-catalyzed crossed-Claisen condensation,⁴ and (iv) titanium-mediated Claisen–aldol tandem reactions of the obtained β -ketoester analogues.

Scheme 2. Practical and robust method for preparing (*E*)-KSAs and *tert*-butyl (1*Z*,3*E*)-1,3-bis(TMS)dienol ethers.

Scheme 3. NaOH-catalyzed crossed-Claisen condensation of KSAs with simple methyl esters.

2. Results and discussion

2.1. Practical and robust preparation of ketene silyl thioacetals (KSTAs)

KSTAs 1 are relevant isosteres of KSAs. Since parent carboxylic thioesters have several characteristic features compared with the corresponding esters due to mild reactivity and specific useful functionalization,⁵ practical preparations of **1** are therefore desirable for natural product synthesis and process chemistry. Initially, we examined the reaction using S-tert-butyl thioesters to prepare KSTA 1a-e following the standard procedure for preparing KSAs under identical conditions [LDA, TMSCl, CPME (cyclopentyl methyl ether) solvent,⁶ 0-25 °C].³ As expected, the desired reaction proceeded smoothly to give **1a-e** (Table 1, entries 1–5). Further favorable features are as follows. (i) n-Octyl and phenyl thioester substrates could be used with the present method (entries 6–14); undesirable side self-Claisen condensation between two thioesters was sufficiently suppressed, in clear contrast to the case of methyl, ethyl, and phenyl esters. (ii) Consistent Z-stereoselectivity was obtained in every case examined, especially for the substrates bearing bulky R² group. (iii) In the case of $\alpha.\alpha$ -disubstituted substrates, a couple of practical purification procedures, distillation, and column chromatography using Florisil[®] were applicable.

Table 1

Stereoselective preparation of (Z)-KSTAs 1

	LDA (1.1 eq.), TMSCI (1.2 eq.)	OTMS
R-SR ³	/ CPME, 20 - 25 °C, 2.5 h	SR3
R ² (R ² >	R ¹)	^{R²} 1

Entry	R^1 , R^2 , R^3	Product	Yield ^a /%		$Z/E^{\mathbf{b}}$
			Distillation	Florisil®	
1	H, Me, ^t Bu	1a	78		89:11
2	H, ⁿ Bu, ^t Bu	1b	70		97:3
3	H, ⁿ Oct, ^t Bu	1c	73		93:7
4	H, the Bu	1d	78		88:12
5	Me, Me, ^t Bu	1e	78		_
6	H, Me, ⁿ Oct	1f	85		93:7
7	H, ⁿ Bu, ⁿ Oct	1g	74		73:27
8	H, ⁱ Pr, ⁿ Oct	1h	80		98:2
9	H, Allyl, ⁿ Oct	1i	74		c
10	Me, Me, Ph	1j	77	73	_
11	Me, Me, ⁿ Oct	1k	86	85	_
12	$-(CH_2)_5-$, ⁿ Oct	11	79	74	_
13	Et, ⁿ Bu, ⁿ Oct	1m	68	73	c
14	Me, OTBS ⁿ Oct	1n		94	99:1

^a Isolated.

^b Determined by ¹H NMR of the crude product.

^c Not determined.

2.2. Practical and robust preparation of alkyl (1*Z*)- and (1*Z*,3*E*)-1,3-bis(TMS)dienol ethers

β-Ketoester-derived 1,3-bis(TMS)-dienol ethers **3** are useful and attractive KSA derivatives. Extensive studies by Langer's group revealed the utility of various 1,3-bis(TMS)dienol ethers of β-dicarbonyl compounds. The impressive progress in this area was reviewed:⁷ precursors for Mukaiyama aldol reaction,⁸ cyclopentannulation,⁹ benzannulation,¹⁰ oxabicyclo[3.2.1]octan-3-one formation,¹¹ tetrahydrofuran formation,¹² furanone formation,¹³ Michael addition,¹⁴ [4+2]- or [3+3]-cycloaddition,¹⁵ Claisen-type reactions,¹⁶ etc.¹⁷

As depicted in Scheme 4, Soriente's group disclosed a notable Ti(OⁱPr)₄-BINOL-catalyzed asymmetric aldol addition of **3a** to aldedydes,¹⁸ which is a promising candidate for the process route to synthesize the key common component of HMG-CoA reductase inhibitors (statin drugs)¹⁹ such as pravastatin, simvastatin, atorvastatin, and pitavastatin.

Scheme 4. Synthesis of statin drugs utilizing asymmetric aldol addition using alkyl (12)-1,3-bis(TMS)dienol ethers as the key step.

The most general method for preparing **3** involves a two-step sequence: TMSCI-Et₃N and TMSCI-LDA at -78 °C.^{10,20} Although our previous method (Scheme 2) involved the use of tert-butvl β -ketoesters, we reinvestigated the possibility of using other, more accessible *alkyl* (Me and ^{*i*}Pr) β -ketoesters **2**. This objective is based on the conventional Weiler's protocol for dianion generation using **2**,²¹ which can be performed at a practical temperature $(0-5 \circ C)$; initial monoanion formation of the active methylene position suppresses the side *self*-Claisen condensation between β -ketoesters 2 due to intermolecular anion-anion repulsion. As anticipated, the desired methyl and isopropyl (1Z)-1,3-bis(TMS)-KSAs 3 were successfully produced from 2; Table 2 lists the successful results. The salient features are as follows. (i) Two methods, A (2 equiv of NaHMDS) and B (each 1 equiv of NaH and NaHMDS), are available. (ii) Both methods were performed under practical conditions (CPME solvent,⁶ 0–25 °C). (iii) The more cost-effective method B produced a slightly better yield than method A in every case examined. (iv) The reaction using methyl and isopropyl 3-oxopentanoates was slightly less 1Z-selective (entries 1-3) than that using the tert-butyl analogue. (v) Consistent and excellent 1Z/3E-stereoselectivity was obtained in the case of R¹-substituted 1,3-bis(TMS)-KSAs 3d-3i (entries 4-9). (vi) R¹-, R²-Disubstituted KSA 3j also exhibited an excellent 1Z/3E ratio (>99:1) based on the chemical shift data of 3g and NOESY measurement (entry 10). (vii) The plausible mechanism for 1Z/3E-stereoselectivity is consistent with the reported speculation.³ (viii) Several trials to prepare 1,3bis(TMS)-KSTAs, however, failed.

Thus, the present simple, practical, and robust method will provide an easy access for preparing various (1Z)- and (1Z/3E)-1,3-bis(TMS)-KSAs **3**.

2.3. NaOH-catalyzed crossed-Claisen condensation between ketene silyl acetals (KSAs) and methyl esters

Our longstanding interests in Ti(Zr)-Claisen condensations²² prompted us to investigate *catalytic* crossed-Claisen condensations.²³ This section describes full details of a previous

Table 2

Stereoselective preparation of (1Z)- and (1Z,3E)-1,3-bis(TMS)dienol

Entry	R ¹ , R ² , R ³	Product	Method A ^a	Method A ^a			Method B ^b		
			Yield ^c /%	1Z/1E ^d	1Z, 3E/1Z, 3Z ^d	Yield ^c /%	$1Z/1E^{d}$	1Z, 3E/1Z, 3Z ^d	
1	H, H, Me	3a	60	90:10		69	91:9		
2	H, H, ⁱ Pr	3b				85	94:6		
3	H, H, ^t Bu	3c	76	>99:1 ^e		87	>99:1		
4	Me, H, Me	3d	75		>99:1	91		93:7	
5	Me, H, ⁱ Pr	3e				92		93:7	
6	Me, H, ^t Bu	3f	90		96:4 ^e	94		>99:1	
7	Et, H, Me	3g				81		>99:1	
8	المنظر المربي H, Me	3h	71		63:37	68		91:9	
9	ⁱ Pr, H, Me	3i	72		>99:1	78		>99:1	
10	Et, Et, Me	3j			>99:1 ^f	88		>99:1	

^a NaHMDS (2.8 equiv) was used as the base.

^b NaH (1.4 equiv) and NaHMDS (1.4 equiv) were used as the base.

^c Isolated.

^d Determined by ¹H NMR of the crude product.

^e Reported data.³

^f Not determined.

communication of NaOH-catalyzed crossed-Claisen condensation using KSAs^4 and a new extension on the reaction using an α -TBSO-substituted KSA.

The major problem of the traditional Claisen condensation lies in the difficulty in controlling the direction of the reaction; the reaction of a mixture of two different esters, each of which possesses α -hydrogens, generally affords all four products. This crucial issue was resolved by Ti-crossed-Claisen condensations between methyl esters and acid chlorides,^{22c,d,f} and between KSAs and acid chlorides.^{22e,23} As depicted in Scheme 3, the present NaOH-catalyzed crossed-Claisen condensation using KSAs derived from both α -monomethyl and α, α -disubstituted esters afforded a variety of the corresponding β -ketoesters.

The initial base screening was guided by the reaction of KSA **4a** with methyl decanoate (Table 3). Among alkali metal hydroxides (MOH, M=Li, Na, K; 0.05 equiv), NaOH had the best result. In contrast, no reaction proceeded using K_2CO_3 and TBAF (entries 1 and 2). The use of the KSA **4b** derived from *tert*-butyl propanoate increased

Table 3

Crossed-Claisen condensation between methyl esters and KSAs **4a** and **4b** derived from methyl and *tert*-butyl propanoates

Entry	Ester	KSA	Base	Yield ^a /
1	CO₂Me	4a	LiOH, KOH, K ₂ CO ₃ , TBAF,	Trace
2	1 7 002	4a	NaOH	48
3	1	4b	NaOH	64
4 5	PhCO ₂ Me	4b 4b	NaOH NaOH	58 61
6		4b	NaOH	57

the yield (entry 3), because the undesirable self-Claisen condensation was sufficiently circumvented. Thus, the reaction using **4b** with some methyl esters proceeded in moderate to good yields (entries 3–6).

Next, we focused our attention on the reaction of KSAs **5** derived from α, α -disubstituted esters. The retro-Claisen condensation of α, α -disubstituted β -ketoesters usually predominates, because the reversible equilibrium barely shifts from the parent esters to β ketoesters due to the fact that β -ketoesters lack the ability to force the formation of the stable β -ketoester enolate.

To overcome this problem, we examined the reaction between KSAs **5a**–**c** derived from α, α -dialkylated esters and methyl esters. Table 4 lists the successful results for the preparation of a variety of inaccessible β -ketoesters **6–17**. The salient features are as follows. (i) Surprisingly, the crossed-Claisen condensation using KSAs 5a-c, which looked like less reactive nucleophiles than KSAs 4a, b, proceeded smoothly and the yields were good to excellent in every case examined. (ii) As an apparent tendency, the reaction using linear esters $(R^2=H)$ predominantly gave silvl enolates **A** of the parent β -ketoesters **B**, whereas that of branched esters (R^1 and $R^2 \neq H$) exclusively afforded B. (iii) Silyl enolates A was easily converted to B on treatment with TBAF or aqueous 1 M HCl. (iv) Several functionalities, such as an acetal, an epoxide, a *tert*-butyl ester, a cyclopropane, and an indole, and a benzyloxy, tolerated the reaction conditions (entries 12-20). (v) Feature (ii) ensures that the use of optically active methyl lactate and alanine methyl ester analogs will not racemize during the reaction, because the sp³ stereogenic center will be maintained. Indeed, two optically active substrates underwent the reaction without racemization (entries 23 and 24).

Scheme 5 shows a plausible reaction mechanism (catalytic cycle) as exemplified by the reaction between KSA **5a** and α -unsubstituted linear methyl ester **18**. First, the ester enolate **19** generated by HO⁻ condenses with **18** to give the β -ketoester **20** with the elimination of MeO⁻. Next, MeO⁻ attacks **5a** to give **19**, which in turn condenses with **20** to give ketone enolate **21**. Ketone enolate **21** receives the TMS group from **5a** to give the desired TMS enolate **22** by reforming **19**. Thus, more than 2 equiv of KSA was required to complete the reaction.

Table 4

Entry

1

NaOH-catalyzed crossed-Claisen condensation between methyl esters and KSAs 4

2	77-002ime	5b	98	6b (92:8)
3 ^b		5c	89	6c (1:>99)
4	≪CO₂Me	5a	88	7a (59:41)
5		5b	87	7b (93:7)
6 ^b		5c	76	7c (1:>99)
7	PhCO ₂ Me	5a	85 ^c	8a —
8		5b	94 ^c	8b —
9	CO ₂ Me	5a	83	9a (1:>99)
10		5b	82	9b (1:>99)
11 ^b		5c	71	9c (1:>99)
12	O_O_CO2Me	5a	88 ^d	10a (77:23)
13		5b	91 ^d	10b (86:14)
14 ^b		5c	76	10c (>99:1)
15	O CO ₂ Me	5a	83	11a (42:58)
16		5b	92	11b (27:73)
17	^r BuO ₂ C (+) ₅ CO ₂ Me	5a	85	12a (51:49)
18		5b	90	12b (54:46)
19 20	CI CI CO ₂ Me	5a 5b	89 88	13a (1:>99) 13b (1:>99)
21	CO ₂ Me N TBS	5a	67 ^e	14
22	BnOCO2Me	5a	83	15 (98:2)
23	NBn ₂	5a	85 ^{f,g}	16 (1:>99)
24	CO ₂ Me OTBDPS	5a	89 ^{f.h}	17 (1:>99)

^a Isolated.

^b KSA (3.0 equiv), NMP solvent, 20–25 °C, 3 h.

 c KSA (1.2 equiv). TBAF was added to the crude product to deprotect TMS and TBS groups.

^d Reaction time is 3 h.

^e Because the products **A** and **B** were not separable, the mixture was treated with 1 M HCl to convert **A** to **B**.

 $^{\rm f}$ Reaction temperature is 0–5 $^\circ\text{C}.$

^g 97% ee by HPLC analysis.

h 95% ee by HPLC analysis.

2.4. Titanium-mediated aldol reactions of newly produced β -ketoesters and their TMS enolates

For further useful functionalization of both the obtained α,α dialkylated β -ketoesters **B** and their TMS enolates **A** in Table 4, Mukaiyama aldol reaction using **A** (method A) and Ti-direct aldol reaction²⁴ using **B** (method B) were performed. Table 5 lists these successful results. All six reactions smoothly proceeded to give the desired adducts **23–25**; R¹=octyl substrate predominantly gave *syn* aldol adducts (entries 1–4), whereas R¹=benzyloxy substrate gave *anti* aldol adducts (entries 5 and 6). This stereoselectivity were significantly enhanced by the Ti-direct method using hexanal (entries 3 and 4). Scheme 6 depicts our *syn* and *anti* switch proposal that the *syn* mechanism utilizes the conventional six-membered chair transition state in the case of **6a**, whereas the *anti* mechanism utilizes a benzoyloxy-coordination boat mechanism in the case of **15a**.²⁵

In conclusion, we developed (i) practical preparations of ketene silyl thioacetals (KSTAs) and alkyl (1*Z*)- or (1*Z*,3*E*)-1,3-bis(TMS)dienol ethers, (ii) a mild, catalytic, practical NaOH-catalyzed crossed-Claisen condensation giving a variety of β -ketoesters, and (iii) further functionalization utilizing two Ti-aldol reactions. These studies will provide new useful protocols for organic synthesis.

Product (A/B)

6a (82.18)

Scheme 5. Proposed reaction mechanism of NaOH-catalyzed crossed-Claisen condensation.

3. Experimental

3.1. General

NMR spectra were recorded on a JEOL DELTA300 spectrometer, operating at 300 MHz for ¹H NMR and 75 MHz for ¹³C NMR. Chemical shift (δ ppm) were reported downfield from tetramethylsilane (0 ppm) for ¹H NMR and were reported in the scale relative to CDCl₃ (77.00 ppm) for ¹³C NMR. IR spectra were recorded on JASCO FT/IR-8000 and/or FT/IR-5300 spectrophotometer. Mass spectra were measured on a JEOL JMS-T100LC spectrometer.

3.1.1. 1-tert-Butylthio-1-(trimethylsiloxy)propene (1a)²⁶

BuLi (1.58 M in hexane, 10.4 mL, 16.5 mmol) was added to a stirred solution of ${}^{i}Pr_{2}NH$ (2.53 mL, 18.0 mmol) in cyclopentyl methyl ether (CPME) (11 mL) at 0–5 °C under an Ar atmosphere, followed by being stirred at the same temperature for 0.5 h. *S-tert-*

Table 5

Ti-Aldol reactions of crossed-Claisen adduct A and B with aldehydes^{a,b}

Method A (Mukaiyama Aldol Reaction)^a

6a-A: R¹ = *n*-Oct 15a-A: R¹ = OBn

Method B (Ti - Direct Aldol Reaction)b

Entry	R ¹	R ²	Method	Product	Yield ^c /%	syn/anti ^d
1	Octyl ^e	Ph	А	23	73	93:7
2			В	23	78	93:7
3		Pentyl	А	24	80	72:28
4			В	24	83	>99:1
5	BnO ^f	Ph	Α	25	67	25:75
6			В	25	80	2:98

^a Molar ratio; A/aldehydes/TiCl₄=1.0:1.2:1.2.

^b Molar ratio ; **9B**/aldehydes/TiCl₄/Bu₃N=1.0:1.2:1.2:1.4.

c Isolated.

^d Determined by ¹H NMR.

^e Compound **9A** (*E*/*Z*=1:>99) was used.

^f Compound **9A** (E/Z=5:95) was used.

Butyl propanethioate (2.19 g, 15 mmol) in CPME (4 mL) was added to the mixture at the same temperature for 6 min, followed by being stirred for 0.5 h. TMSCI (2.28 mL, 18.0 mmol) was added to the mixture for 2 min, followed by being stirred for 0.5 h. Then, the mixture was warmed up to 20-25 °C, followed by being stirred at same temperature for 1.5 h. The reaction mixture was poured into ice-water and hexane, which was extracted with hexane. The organic phase was washed with brine, dried (Na₂SO₄), and concentrated. The obtained crude oil was purified by distillation to give the desired product (2.56 g, 78%).

(*Z* Isomer) Colorless oil; bp 47–48 °C/1.5 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.21 (9H, s), 1.37 (9H, s), 1.73 (3H, d, *J*=6.9 Hz), 5.28 (1H, q, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.3, 14.7, 31.7, 46.7, 115.3, 145.6; IR (neat) 2963, 2922, 1628, 1363, 1254, 1168, 1140, 1113, 1067, 943, 874, 758 cm⁻¹.

3.1.2. 1-tert-Butylthio-1-(trimethylsiloxy)-1-hexene (1b)²⁷

Following the procedure for preparing KSTA **1a**, the reaction of *S*-*tert*-butyl hexanethioate (7.53 g, 40 mmol) gave the desired product **1b** (7.29 g, 70%).

(*Z* Isomer) Colorless oil; bp 45–48 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.21 (9H, s), 0.89 (3H, t, *J*=6.9 Hz), 1.24–1.38 (4H, m), 1.37 (9H, s), 2.09–2.25 (2H, m), 5.20 (1H, t, *J*=7.6 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.3, 14.0, 22.3, 28.9, 31.7, 32.2, 46.3, 121.0, 145.0; IR (neat) 2961, 2924, 2861, 1620, 1458, 1251, 1167, 1124, 878, 847 cm⁻¹.

3.1.3. 1-tert-Butylthio-1-(trimethylsiloxy)-1-decene (1c)

Following the procedure for preparing KSTA **1a**, the reaction of *S*-*tert*-butyl decanethioate (9.78 g, 40 mmol) gave the desired product **1e** (9.25 g, 73%).

(*Z* Isomer) Colorless oil; bp 94–97 °C/0.4 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.21 (9H, s), 0.87 (3H, t, *J*=6.5 Hz), 1.16–1.39 (12H, m), 1.36 (9H, s), 2.08–2.23 (2H, m), 5.21 (1H, t, *J*=7.6 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.3, 14.1, 22.7, 29.2, 29.3, 29.5, 30.0, 31.7, 31.9, 46.3, 121.1, 144.9; IR (neat) 2959, 2924, 2855, 1620, 1458, 1363, 1252, 1125, 874, 845, 756 cm⁻¹.

3.1.4. 1-tert-Butylthio-1-(trimethylsiloxy)-1,10-undecadiene (1d)

Following the procedure for preparing KSTA **1a**, the reaction of *S-tert*-butyl 10-undecenethioate (7.70 g, 30 mmol) gave the desired product **1d** (7.69 g, 78%).

(*Z* Isomer) Colorless oil; bp 96–99 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.21 (9H, s), 1.20–1.42 (10H, m), 1.36 (9H, s), 1.93–2.08 (2H, m), 2.09–2.24 (2H, m), 4.84–5.04 (2H, m), 5.20 (1H, t, *J*=7.6 Hz), 5.81 (1H, ddt, *J*=6.5 Hz, 10.3 Hz, 17.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.3, 28.9, 29.1, 29.1, 29.2, 29.3, 29.9, 31.7, 33.8, 46.3, 114.1, 121.0, 139.2, 145.0; IR (neat) 2961, 2926, 2857, 1620, 1252, 1362, 1167, 1126, 909, 872 cm⁻¹.

3.1.5. 1-tert-Butylthio-2-methyl-1-(trimethylsiloxy)propene (1e)²⁸

Following the procedure for preparing KSTA **1a**, the reaction of *S-tert*-butyl 2-methylpropanethioate (3.58 g, 22.3 mmol) gave the desired product **1e** (3.06 g, 78%).

Colorless oil; bp 63–65 °C/6.8 mmHg. ¹H NMR (300 MHz, CDCl₃): δ 0.19 (9H, s), 1.32 (9H, s), 1.73 (3H, s), 1.88 (3H, s); ¹³C NMR (75 MHz, CDCl₃): δ 0.8, 18.8, 22.2, 31.6, 47.4, 126.4, 138.2; IR (neat) 2963, 2861, 1628, 1456, 1363, 1254, 1148, 1055, 901, 864 cm⁻¹.

3.1.6. 1-Trimethylsiloxy-1-octylthio-1-propene (1f)

Following the procedure for preparing KSTA **1a**, the reaction of *S*-octyl propanethioate (2.02 g, 10 mmol) gave the desired product **1f** (2.14 g, 85%).

(*Z* Isomer) Colorless oil; bp 58–60 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.21 (9H, s), 0.87 (3H, t, *J*=6.5 Hz), 1.13–1.50 (10H, m), 1.50–1.67 (2H, m), 1.65 (3H, d, *J*=6.9 Hz), 2.64 (2H, t, *J*=7.2 Hz), 4.98 (1H, q, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ –0.1,

Scheme 6. Proposed mechanism of stereoselective Ti-mediated aldol addition.

13.3, 14.1, 22.6, 28.8, 29.1, 30.1, 30.6, 31.8, 107.9, 145.0; IR (neat) 2959, 2857, 1698, 1636, 1458, 1252, 1159, 1064, 947, 873, 846 cm⁻¹.

3.1.7. 1-Trimethoxysiloxy-1-octylthio-1-hexene (1g)

Following the procedure for preparing KSTA **1a**, the reaction of *S*-octyl butanethioate (2.44 g, 10 mmol) gave the desired product **1f** (2.36 g, 74%).

(*Z* Isomer) Colorless oil; bp 81–83 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.22 (9H, s), 0.79–0.96 (6H, m), 1.15–1.44 (14H, m), 1.49–1.64 (2H, m), 2.64 (2H, t, *J*=7.2 Hz), 4.97 (1H, t, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.6, 14.0, 14.1, 22.2, 22.4, 22.6, 27.8, 28.8, 29.2, 30.1, 30.7, 31.8, 32.3, 114.2, 144.3; IR (neat) 2957, 2926, 2855, 1624, 1508, 1458, 1252, 874, 847 cm⁻¹.

3.1.8. 1-Trimethylsiloxy-3-methyl-1-octylthio-1-butene (1h)

Following the procedure for preparing KSTA **1a**, the reaction of *S*-octyl 3-methylbutanethioate (2.30 g, 10 mmol) gave the desired product **1h** (2.42 g, 80%).

(*Z* Isomer) Colorless oil; bp 79–81 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.23 (9H, s), 0.88 (3H, t, *J*=6.9 Hz), 0.96 (6H, d, *J*=9.7 Hz), 1.11–1.43 (10H, m), 1.45–1.64 (2H, m), 2.50 (3H, m), 4.82 (1H, d, *J*=9.7 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.0, 14.1, 22.6, 23.4, 28.2, 28.7, 29.2, 30.1, 30.6, 31.8, 122.1, 142.6; IR (neat) 2959, 2928, 2857, 1626, 1466, 1419, 1379, 1362, 1252, 1161, 1117, 881, 849, 756 cm⁻¹.

3.1.9. 1-Trimethoxysiloxy-1-octylthio-1,4-pentadiene (1i)

Following the procedure for preparing KSTA **1a**, the reaction of *S*-octyl 4-pentenethioate (2.84 g, 10 mmol) gave the desired product **1i** (2.36 g, 74%).

(*Z* Isomer) Colorless oil; bp 71–73 °C/0.1 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.24 (9H, s), 0.88 (3H, t, *J*=6.9 Hz), 1.11–1.42 (10H, m), 1.44–1.65 (2H, m), 2.53–2.69 (2H, m), 2.72–2.94 (2H, m), 4.86–5.10 (3H, m), 5.66–5.88 (1H, m); ¹³C NMR (75 MHz, CDCl₃):

 δ 0.1, 14.1, 22.6, 28.7, 29.1, 30.1, 30.6, 31.8, 32.4, 43.2, 110.8, 114.2, 137.2, 145.9; IR (neat) 2959, 2928, 2855, 1698, 1638, 1624, 1509, 1458, 1252, 1150, 868, 847 cm^{-1}.

3.1.10. 2-Methyl-1-trimethylsiloxy-1-phenylthio-1-propene (1j)²⁹

Following the procedure for preparing KSTA **1a**, the reaction of *S*-phenyl 2-methylpropanethioate (1.80 g, 10 mmol) gave the desired product **1j** (1.93 g, 77%) by distillation. Florisil[®] column chromatography (hexane) purification gave **1j** (1.84 g, 73%).

Colorless oil; bp 58–60 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.11 (9H, s), 1.18 (3H, s), 1.92 (3H, s), 7.09–7.16 (1H, m), 7.22–7.29 (4H, m); ¹³C NMR (75 MHz, CDCl₃): δ 0.4, 18.7, 124.1, 125.2, 127.4, 128.7, 135.3, 135.9.

3.1.11. 2-Methyl-1-trimethylsiloxy-1-octylthio-1-propene (1k)^{22d}

Following the procedure for preparing KSTA **1a**, the reaction of *S*-octyl 2-methylpropanethioate (1.95 g, 9 mmol) gave the desired product **1k** (2.23 g, 86%) by distillation. Florisil[®] column chromatography (hexane) purification gave **1k** (2.21 g, 85%).

Colorless oil; bp 58–60 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.22 (9H, s), 0.88 (3H, t, *J*=6.5 Hz), 1.08–1.43 (10H, m), 1.47–1.59 (2H, m), 1.68 (3H, s), 1.83 (3H, s), 2.60 (2H, t, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.4, 14.0, 18.6, 20.9, 22.7, 28.7, 29.2, 29.7, 31.7, 31.8, 120.2.

3.1.12. 1-Trimethylsiloxy-1-octylthiomethylenecyclohexane (11)

Following the procedure for preparing KSTA **1a**, the reaction of *S*-octyl cyclohexanethiocarboxylate (1.80 g, 7 mmol) gave the desired product **1l** (1.82 g, 79%) by distillation. Florisil[®] column chromatography (hexane) purification gave **1l** (1.70 g, 74%).

Colorless oil; bp 66–68 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.22 (9H, s), 0.88 (3H, t, *J*=6.9 Hz), 1.17–1.42 (10H, m), 1.42–1.58 (2H, m), 2.16–2.25 (2H, m), 2.31–2.40 (2H, m), 2.61 (2H, t, t)

J=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.3, 14.1, 22.6, 26.7, 28.0, 28.5, 28.7, 29.2, 31.4, 31.6, 31.8, 128.4; IR (neat) 2926, 2855, 1630, 1449, 1252, 1130, 1091, 918, 846 cm⁻¹.

3.1.13. 2-Ethyl-1-trimethylsiloxy-1-octylthio-1-hexene (1m)

Following the procedure for preparing KSTA **1a**, the reaction of *S*-octyl 2-ethylhexanethioate (2.72 g, 10 mmol) gave the desired product **1m** (2.52 g, 73%) by distillation. Florisil[®] column chromatography (hexane) purification gave **1m** (2.34 g, 68%).

Colorless oil; bp 87–89 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.23 (9H, s), 0.79–1.00 (9H, m), 1.16–1.42 (14H, m), 1.47–1.61 (2H, m), 2.01–2.15 (2H, m), 2.16–2.30 (2H, m), 2.61 (2H, t, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.3, 12.5, 13.8, 14.1, 22.7, 22.9, 25.4, 28.8, 29.2, 29.3, 30.1, 31.2, 31.5, 31.7, 31.9, 130.8; IR (neat) 2959, 2928, 2856, 1686, 1624, 1458, 1252, 1150, 1092, 882, 845 cm⁻¹.

3.1.14. 2-(tert-Butyldimethylsiloxy)-1-trimethylsiloxy-1-octylthio-1-propene (**1n**)

Following the procedure for preparing KSTA **1a**, the reaction of *S*-octyl 2-(*tert*-butyldimethylsiloxy)propanethioate (665 mg, 2 mmol) gave the desired product **1n** (762 mg, 94%) by Florisil[®] column chromatography (hexane).

(Z Isomer) Colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 0.15 (6H, s), 0.22 (9H, s), 0.88 (3H, t, *J*=6.9 Hz), 0.96 (9H, s), 1.16–1.43 (10H, m) 1.46–1.62 (2H, m), 1.85 (3H, s), 2.62 (2H, t, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ –4.0, 0.4, 1.6, 14.1, 18.1, 22.6, 25.9, 28.9, 29.2, 29.7, 31.7, 31.8, 129.8, 140.7; IR (neat) 2928, 2856, 1686, 1464, 1372, 1252, 1154, 833 cm⁻¹.

3.2. General procedure for the preparation of β -ketoesterderived 1,3-bis(TMS)-dienol ethers 3

3.2.1. Method A of Table 2

A β -ketoester (10.0 mmol) was added to a stirred suspension of NaH (14.0 mmol) in CPME (50 mL) at 0–5 °C under an Ar atmosphere, followed by being stirred at the same temperature for 0.5 h. After evolution of H₂ gas ceased, NaHMDS (1.9 M in THF, 7.4 mL, 14 mmol) was added to the mixture for 5–8 min, followed by being stirred at the same temperature for 0.5 h. TMSCl (3.0 mL, 24.0 mmol) was added to the mixture for 5–8 min, followed by being stirred for 0.5 h. Then, the mixture was warmed up to 20–25 °C, followed by being stirred at same temperature for 1.5 h. The reaction mixture was poured into ice-water and hexane, which was extracted with hexane. The organic phase was washed with brine, dried (Na₂SO₄), and concentrated. The obtained crude oil was purified by distillation to give the desired product.

3.2.2. Method B of Table 2

A β -ketoester (10.0 mmol) was added to a stirred solution of NaHMDS (1.9 M in THF, 14.7 mL, 28.0 mmol) in CPME (20 mL) at 0–5 °C under an Ar atmosphere, followed by being stirred at same temperature for 0.5 h. TMSCl (3,0 mL, 24.0 mmol) was added to the mixture for 5–8 min, followed by being stirred for 0.5 h. Then, the mixture was warmed up to 20–25 °C, followed by being stirred at same temperature for 1.5 h. The reaction mixture was poured into ice-water and hexane, which was extracted with hexane. The organic phase was washed with brine, dried (Na₂SO₄), and concentrated. The obtained crude oil was purified by distillation to give the desired product.

(*Note*: after finishing this work, hexane or heptane solvent instead of CPME was found to be available.)

3.2.3. 1,3-Bis(trimethylsiloxy)-1-methoxybuta-1,3-diene (3a)

[Method A] The reaction of methyl 3-oxobutanoate (1.16 g, 10 mmol) gave the desired product **1** (1.56 g, 60%). [Method B] (1.79 g, 69%).

Colorless oil; bp 43–45 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.21 (9H, s), 0.24 (9H, s), 3.55 (3H, s), 3.94 (1H, d, *J*=1.4 Hz), 4.14 (1H, d, *J*=1.4 Hz), 4.47 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 0.2, 0.4, 54.9, 77.57, 89.2, 153.4, 158.6; IR (neat) 2964, 1708, 1652, 1444, 1388, 1252, 1196, 1093 cm⁻¹.

3.2.4. 1,3-Bis(trimethylsiloxy)-1-isopropoxybuta-1,3-diene (3b)

[Method B] The reaction of isopropyl 3-oxobutanoate (1.44 g, 10 mmol) gave the desired product **3b** (2.45 g, 85%).

Colorless oil; bp 46–47 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.17 (9H, s), 0.25 (9H, s), 1.26 (6H, d, *J*=6.2 Hz), 3.91 (1H, d, *J*=1.4 Hz), 4.12 (1H, d, *J*=1.4 Hz), 4.22 (1H, sep, *J*=6.2 Hz), 4.47 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 0.2, 0.6, 21.7, 70.2, 78.6, 88.9, 153.6, 156.1; IR (neat) 2978, 2961, 1716, 1649, 1385, 1252, 1221, 1188, 1113, 1064, 1014, 922, 847 cm⁻¹.

3.2.5. 1,3-Bis(trimethylsiloxy)-1-tert-butoxybuta-1,3-diene $(3c)^3$

[Method A] Ref. 3. [Method B] The reaction of methyl 3-oxobutanoate (1.58 g, 10 mmol) gave the desired product **3c** (2.63 g, 87%).

Colorless oil; bp 65–67 °C/0.5 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.15 (9H, s), 0.21 (9H, s), 1.38 (9H, s), 4.21 (1H, d, *J*=1.0 Hz), 4.25 (1H, d, *J*=1.0 Hz), 4.54 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 0.2, 0.6, 28.7, 79.0, 85.9, 103.4, 146.3, 152.4; IR (neat) 2978, 2912, 1657, 1612, 1368, 1300, 1254, 1136, 1107, 1053, 939, 908, 852 cm⁻¹.

3.2.6. 1,3-Bis(trimethylsiloxy)-1-methoxypenta-1,3-diene (3d)

[Method A] The reaction of methyl 3-oxopentanoate (1.30 g, 10 mmol) gave the desired product **3** (2.06 g, 75%). [Method B] (2.50 g, 91%).

Colorless oil; bp 78–80 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.16 (9H, s), 0.17 (9H, s), 1.50 (3H, d, *J*=6.9 Hz), 3.58 (3H, s), 4.04 (1H, s), 4.64 (1H, q, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.4, 0.6, 12.8, 55.0, 73.7, 102.7, 126.9, 146.1, 157.6; IR (neat) 2959, 1665, 1252, 1219, 1088, 978, 845 cm⁻¹.

3.2.7. 1,3-Bis(trimethylsiloxy)-1-isopropoxypenta-1,3-diene (3e)

[Method B] The reaction of isopropyl 3-oxopentanoate (1.58 g, 10 mmol) gave the desired product **3e** (2.78 g, 92%).

Colorless oil; bp 80–82 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.15 (9H, s), 0.21 (9H, s), 1.28 (6H, d, *J*=6.2 Hz), 1.49 (3H, d, *J*=6.9 Hz), 4.02 (1H, s), 4.26 (1H, sep, *J*=6.2 Hz), 4.62 (1H, q, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.4, 0.8, 12.8, 21.7, 70.0, 74.9, 102.5, 146.4, 154.9; IR (neat) 2963, 2912, 1655, 1373, 1309, 1252, 1217, 1159, 1107, 1065, 920, 845 cm⁻¹.

3.2.8. 1,3-Bis(trimethylsiloxy)-1-tert-butoxypenta-1,3-diene (3f)

[Method A] Ref. 3. [Method B] The reaction of *tert*-butyl 3-oxopentanoate (1.72 g, 10 mmol) gave the desired product **3** (2.98 g, 94%).

Colorless oil; bp 56–57 °C/0.3 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.15 (9H, s), 0.21 (9H, s), 1.38 (9H, s), 1.50 (3H, d, *J*=6.9 Hz), 4.41 (1H, s), 4.63 (1H, t, *J*=6.9 Hz), 4.62 (1H, q, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.4, 0.7, 12.7, 28.6, 79.0, 85.9, 103.4, 146.3, 152.4; IR (neat) 2978, 2912, 1657, 1368, 1300, 1254, 1136, 1107, 1053, 939, 908, 852 cm⁻¹.

3.2.9. 1,3-Bis(trimethylsiloxy)-1-methoxy hexa-1,3-diene (3g)

[Method B] The reaction of methyl 3-oxohexanoate (1.44 g, 10 mmol) gave the desired product **3** (2.34 g, 81%).

Colorless oil; bp 45–46 °C/0.2 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.16 (9H, s), 0.21 (9H, s), 0.94 (3H, t, *J*=7.6 Hz), 1.92 (2H, quin, *J*=7.6 Hz), 3.57 (3H, s), 4.06 (1H, s), 4.57 (1H, t, *J*=7.6 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.3, 0.6, 14.8, 20.8, 55.0, 73.8, 110.9, 144.8, 157.6; IR (neat) 2961, 2908, 1718, 1655, 1387, 1252, 1221, 1165, 1127, 1092, 982, 920, 847, 760 cm⁻¹.

3.2.10. 1,3-Bis(trimethylsiloxy)-1-methoxy-trideca-1,3,12-triene (**3h**)

[Method A] The reaction of methyl 3-oxodec-12-enoate (2.40 g, 10 mmol) gave the desired product **3h** (2.73 g, 71%). [Method B] (2.59 g, 68%).

Colorless oil; bp 87–89 °C/0.1 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.16 (9H, s), 0.18 (9H, s), 1.11–1.55 (10H, m), 1.78–2.13 (4H, m), 3.56 (3H, ×7/10, s), 3.68 (3H, ×3/10, s), 4.07 (1H, s), 4.57 (1H, ×7/10, d, *J*=7.6 Hz), 4.81, (1H, -3/10, d, *J*=7.6 Hz) 4.83–5.05 (2H, m), 5.80 (1H, ddt, *J*=6.9, 10.3, 16.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.2, 0.3, 0.6, 27.1, 27.4, 28.9, 29.1, 29.2, 29.3, 29.4, 30.2, 33.8, 51.8, 55.0, 73.9, 76.6, 77.0, 77.4, 109.0, 110.9, 114.1, 139.1, 139.2, 144.2, 145.2, 157.5; IR (neat) 2926, 2855, 1655, 1252, 1211, 1091, 978, 849 cm⁻¹.

3.2.11. 1,3-Bis(trimethylsiloxy)-1-methoxy-5-methylhexa-1,3diene (**3i**)

[Method A] The reaction of methyl 5-methyl-3-oxohexanoate (1.58 g, 10 mmol) gave the desired product **3i** (2.18 g, 72%). [Method B] (2.36 g, 78%).

Colorless oil; bp 63–69 °C/0.1 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.16 (9H, s), 0.22 (9H, s), 0.94 (6H, d, *J*=6.5 Hz), 2.21–2.46 (1H, m), 3.56 (3H, s), 4.10 (1H, s), 4.42 (1H, d, *J*=9.6 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.3, 0.7, 23.6, 26.9, 55.0, 73.7, 117.1, 143.6, 157.5; IR (neat) 2959, 2869, 1665, 1252, 1208, 1088, 978, 845 cm⁻¹.

3.2.12. 1,3-Bis(trimethylsiloxy)-1-methoxy-2-ethylhexa-1,3diene (**3***j*)

[Method B] The reaction of methyl 2-ethyl-3-oxohexanoate (2.40 g, 10 mmol) gave the desired product **3i** (2.79 g, 88%).

Colorless oil; bp 63–69 °C/0.1 mmHg; ¹H NMR (300 MHz, CDCl₃): δ 0.14 (9H, s), 0.21 (9H, s), 0.94 (3H, t, *J*=7.2 Hz), 0.95 (3H, t, *J*=7.6 Hz), 2.05 (2H, q, *J*=7.2 Hz), 2.06 (2H, quin, *J*=7.6 Hz), 3.52 (3H, s), 4.57 (1H, t, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 0.2, 0.4, 13.8, 14.4, 18.9, 20.9, 56.2, 102.2, 114.0, 145.3, 151.0; IR (neat) 2963, 2934, 2903, 2874, 1655, 1252, 1211, 1173, 1115, 1084, 1046, 961, 920, 845, 666 cm⁻¹.

3.2.13. Methyl 2,2-dimethyl-3-(trimethylsiloxy)dodec-3-enoate (**6a-A**) and methyl 2,2-dimethyl-3-oxododecanoate (**6a-B**)

1-Methoxy-1-trimethylsiloxy-2-methyl-1-propene (**5a**, 418 mg, 2.4 mmol) was added to a stirred solution of methyl decanoate (186 mg, 1.0 mmol) and NaOH (2 mg, 0.05 mmol) in DMF (0.2 mL) at 20–25 °C under an Ar atmosphere, followed by being stirred at the same temperature for 1 h. The mixture was quenched with water, which was extracted twice with ether. The combined organic phase was washed with water, brine, dried (Na₂SO₄), and concentrated. The obtained crude product was purified by SiO₂ column chromatography (hexane/AcOEt=80:1) to give the desired products **6a-A** (267 mg, 81%) and **6a-B** (46 mg, 18%).

Compound **6a-A.** Colorless oil; ¹H NMR: δ 0.17 (9H, s), 0.88 (3H, t, *J*=6.9 Hz), 1.21–1.36 (12H, m), 1.30 (6H, s), 1.97 (2H, q, *J*=6.9 Hz), 3.66 (3H, s), 4.60 (1H, t, *J*=6.9 Hz); ¹³C NMR: δ 0.8, 14.1, 22.7, 24.4, 26.1, 29.3, 29.4, 29.5, 29.7, 31.8, 48.4, 51.9, 106.6, 152.6, 176.5; IR (neat) 2924, 2857, 1740, 1667, 1252, 1153, 845 cm⁻¹.

Compound **6a-B**. Colorless oil; ¹H NMR: δ 0.88 (3H, t, *J*=6.9 Hz), 1.14–1.32 (12H, m), 1.36 (6H, s), 1.52–1.61 (2H, m), 2.43 (2H, t, *J*=7.2 Hz), 3.72 (3H, s); ¹³C NMR: δ 14.1, 20.3, 21.9, 22.6, 23.8, 29.1, 29.3, 29.4, 31.85, 37.9, 52.4, 55.6, 174.3, 208.1; IR (neat) 2921, 2857, 1747, 1716, 1466, 1267, 1150 cm⁻¹.

3.2.14. Methyl 2-ethyl-2-methyl-3-(trimethylsiloxy)dodec-3-enoate (**6b-A**) and methyl 2-ethyl-2-methyl-3-oxododecanoate (**6b-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between methyl decanoate (186 mg, 1.0 mmol) and 1-methoxy-1-trimethylsiloxy-2-methyl-1-butene (**5b**, 452 mg, 2.4 mmol) gave the desired products **6b-A** (309 mg, 90%) and **6b-B** (21 mg, 8%).

Compound **6b**-A. colorless oil; ¹H NMR: δ 0.16 (9H, s), 0.80 (3H, t, *J*=7.6 Hz), 0.88 (3H, t, *J*=6.9 Hz), 1.23–1.35 (12H, m), 1.24 (3H, s), 1.71 (1H, dq, *J*=7.6, 13.4 Hz), 1.78 (1H, dq, *J*=7.6, 13.4 Hz), 1.88–2.07 (2H, m), 3.65 (3H, s), 4.56 (1H, t, *J*=6.9 Hz); ¹³C NMR: δ 0.9, 8.8, 14.1, 20.5, 22.7, 26.1, 28.7, 29.3, 29.4, 29.5, 29.8, 31.9, 51.7, 52.5, 107.5, 151.4, 176.1.; IR (neat) 2926, 2855, 1738, 1665, 1252, 1148, 1125, 1103, 847 cm⁻¹.

Compound **6b-B**. Colorless oil; ¹H NMR: δ 0.82 (3H, t, *J*=7.6 Hz), 0.88 (3H, t, *J*=6.9 Hz), 1.21–1.28 (12H, m), 1.31 (3H, s), 1.53–1.61 (2H, m), 1.80 (1H, dq, *J*=7.6, 14.1 Hz), 1.94 (1H, dq, *J*=7.6, 14.1 Hz), 2.36 (1H, dt, *J*=6.9, 17.2 Hz), 2.43 (1H, dt, *J*=6.9, 17.2 Hz), 3.72 (3H, s); ¹³C NMR: δ 8.6, 14.1, 18.3, 22.7, 23.8, 27.7, 29.1, 29.3, 29.4, 29.4, 31.9, 38.3, 52.2, 60.0, 173.8, 208.0; IR (neat) 2928, 2856, 1745, 1715, 1460, 1244, 1148 cm⁻¹.

3.2.15. Methyl 2-hydroxy-2-methyl-3-oxododecanoate (6c)

2-(*tert*-Butyldimethylsiloxy)-1-methoxy-1-(trimethylsiloxy)-1-propene (**5c**, 436 mg, 1.5 mmol) was added to a stirred solution of methyl decanoate (93 mg, 0.5 mmol) and NaOH (1 mg, 0.03 mmol) in *N*-methylpyrrolidone (NMP) (0.1 mL) at 20–25 °C under an Ar atmosphere, followed by being stirred for 3 h. Water was added to the mixture, which was extracted with diethyl ether. The organic phase was washed with water, brine, dried (Na₂SO₄), and concentrated. To the obtained crude product in THF (0.5 mL), 1 M TBAF solution in THF (1 mL) was added at 0–5 °C under an Ar atmosphere, followed by being stirred for 1 h. Water was added to the reaction mixture, which was extracted with AcOEt. The organic phase was washed with water, brine, dried (Na₂SO₄), and concentrated. The obtained crude product was purified by silica gel column chromatography (hexane/AcOEt=4:1) to give the desired product **6c** (119 mg, 89%).

Colorless oil; ¹H NMR: δ 0.87 (3H, t, *J*=6.9 Hz), 1.17–1.36 (12H, m), 1.52–1.65 (2H, m), 1.59 (3H, s), 2.53 (1H, dt, *J*=17.9, 7.2 Hz), 2.64 (1H, dt, *J*=17.9, 7.2 Hz), 3.79 (3H, s), 4.21 (1H, br s); ¹³C NMR: δ 14.1, 21.9, 22.6, 23.5, 29.0, 29.2, 29.3, 29.4, 31.8, 36.3, 53.2, 80.9, 171.9, 207.2; IR (neat) 3470, 2986, 2926, 2856, 1750, 1456, 1265, 1159 cm⁻¹.

3.2.16. Methyl 2,2,5,5-tetramethyl-3-(trimethylsiloxy)hept-3,6dienoate (**7a-A**) and methyl 2,2,5,5-tetramethyl-3-oxohept-6enoate (**7a-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between methyl 3,3-dimethyl-4-pentenoate (142 mg, 1.0 mmol) and **5a** (418 mg, 2.4 mmol) gave the desired products **7a-A** (147 mg, 52%) and **7a-B** (76 mg, 36%).

Compound **7a-A**. Colorless oil; ¹H NMR: δ 0.16 (9H, s), 1.16 (6H, s), 1.31 (6H, s), 3.66 (3H, s), 4.52 (1H, s), 4.86 (1H, dd, *J*=1.4, 10.7 Hz), 4.96 (1H, dd, *J*=1.4, 17.5 Hz), 5.95 (1H, dd, *J*=10.7, 17.5 Hz); ¹³C NMR: δ 1.7, 25.2, 28.5, 36.8, 49.0, 52.0, 109.5, 114.1, 147.9, 151.6, 176.6; IR (neat) 2957, 1717, 1468, 1264, 1150 cm⁻¹.

Compound **7a-B**. Colorless oil; ¹H NMR: δ 1.11 (6H, s), 1.32 (6H, s), 2.45 (2H, s), 3.71 (3H, s), 4.90 (1H, dd, *J*=1.4, 10.7 Hz), 4.93 (1H, dd, *J*=1.4, 17.5 Hz), 5.91 (1H, dd, *J*=10.7, 17.5 Hz); ¹³C NMR: δ 21.9, 26.9, 35.9, 48.7, 52.3, 56.1, 110.4, 147.2, 174.2, 206.1; IR (neat) 2959, 1738, 1655, 1252, 1148, 1121, 845 cm⁻¹.

3.2.17. Methyl 2-ethyl-2,5,5-trimethyl-3-(timethylsiloxy)hept-3,6dienoate (**7b-A**) and methyl 2-ethyl-2,5,5-trimethyl-3-oxohept-6enoate (**7b-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between methyl 3,3-dimethyl-4-pentenoate (142 mg, 1.0 mmol) and **5b** (452 mg, 2.4 mmol) gave the desired products **7b-A** (242 mg, 81%) and **7b-B** (14 mg, 6%).

Compound **7b**-*A*. Colorless oil; ¹H NMR: δ 0.15 (9H, s), 0.80 (3H, t, *J*=7.6 Hz), 1.16 (3H, s, *J*=6.9 Hz), 1.67 (3H, s), 1.24 (3H, s), 1.72 (1H, dq, *J*=7.6, 13.8 Hz), 1.77 (1H, dq, *J*=7.6, 13.8 Hz), 4.86 (1H, dd, *J*=1.4, 10.7 Hz), 4.97 (1H, dd, *J*=1.4, 17.4 Hz), 5.96 (1H, dd, *J*=10.7, 17.4 Hz);

 13 C NMR: δ 1.8, 8.5, 21.5, 28.3, 28.7, 28.8, 37.0, 51.8, 52.9, 109.5, 115.6, 148.0, 149.9, 176.3; IR (neat) 2965, 1736, 1651, 1252, 1115, 847 cm $^{-1}$.

Compound **7b-B**. Colorless oil; ¹H NMR: δ 0.81 (3H, t, *J*=7.6 Hz), 0.87 (3H, t, *J*=6.9 Hz), 1.11 (6H, s), 1.28 (3H, s), 1.75 (1H, dq, *J*=7.6, 13.8 Hz), 1.92 (1H, dq, *J*=7.6, 13.8 Hz), 2.40 (1H, d, *J*=17.6 Hz), 2.48 (1H, dd, *J*=17.6 Hz), 3.71 (3H, s), 4.90 (1H, dd, *J*=1.4, 10.7 Hz), 4.93 (1H, dd, *J*=1.4, 17.5 Hz), 5.92 (1H, dd, *J*=10.7, 17.5 Hz); ¹³C NMR: δ 8.6, 18.1, 26.9, 27.7, 35.9, 49.2, 52.2, 60.5, 110.4, 147.3, 173.6, 205.9; IR (neat) 2971, 2883, 1716, 1460, 1242, 1150 cm⁻¹.

3.2.18. Methyl 2-hydroxy-2,5,5-trimethyl-3-oxohept-6-enoate (**7c**)

Following the procedure for preparing **6c**, the reaction between methyl 3,3-dimethyl-4-pentenoate (71 mg, 0.5 mmol) and **5c** (436 mg, 1.5 mmol) gave the desired product **7c** (81 mg, 76%).

Colorless oil; ¹H NMR: δ 1.13 (6H, s), 1.56 (3H, s), 2.56 (1H, d, J=17.5 Hz), 2.68 (1H, d, J=17.5 Hz), 3.78 (3H, s), 4.20 (1H, br s, OH), 4.93 (1H, dd, J=10.7, 1.0 Hz), 4.95 (1H, dd, J=17.5, 1.0 Hz), 5.89 (1H, dd, J=17.5, 10.7 Hz); ¹³C NMR: δ 21.8, 26.8, 27.0, 36.0, 47.0, 53.2, 81.3, 110.9, 146.6, 171.8, 205.3; IR (neat) 3478, 2961, 1755, 1732, 1451, 1263, 1163, 1041, 916 cm⁻¹.

3.2.19. Methyl 2,2-dimethyl-3-oxo-3-phenylpropanoate (8a)

Following the procedure for preparing **6a-B**, the reaction between methyl benzoate (136 mg, 1.0 mmol) and **5a** (214 mg, 1.2 mmol) gave the desired product **8a** (175 mg, 85%).

Colorless oil; ¹H NMR: δ 1.55 (6H, s), 3.64 (3H, s), 7.39–7.45 (2H, m), 7.49–7.55 (1H, m), 7.80–7.84 (2H, m); ¹³C NMR: δ 23.9, 52.5, 53.2, 128.5, 132.7, 135.1, 137.3, 175.6, 197.5; IR (neat) 2996, 2951, 1740, 1686, 1271, 1142, 708 cm⁻¹.

3.2.20. Methyl 2-ethyl-2-methyl-3-oxo-3-phenylpropanoate (8b)

Following the procedure for preparing **6a-B**, the reaction between methyl benzoate (136 mg, 1.0 mmol) and **5b** (226 mg, 1.2 mmol) gave the desired product **8b** (194 mg, 94%).

Colorless oil; ¹H NMR: δ 0.82 (3H, t, *J*=7.6 Hz), 1.51 (3H, s), 2.05 (1H, dq, *J*=7.6, 14.1 Hz), 2.10 (1H, dq, *J*=7.6, 14.1 Hz), 3.63 (3H, s), 7.38–7.44 (2H, m), 7.49–7.54 (1H, m), 7.80–7.84 (2H, m); ¹³C NMR: δ 8.2, 20.5, 29.3, 52.3, 57.3, 128.4, 128.5, 132.6, 135.7, 174.9, 197.5; IR (neat) 2976, 2951, 1738, 1684, 1449, 1250, 1130, 702 cm⁻¹.

3.2.21. Methyl 3-cyclohexyl-2,2-dimethyl-3-oxopropanoate (9a)²¹

Following the procedure for preparing **6a-B**, the reaction between methyl cyclohexanoate (142 mg, 1.0 mmol) and **5a** (418 mg, 2.4 mmol) gave the desired product **9a** (176 mg, 83%).

Colorless oil; ¹H NMR: δ 1.17–1.48 (5H, m), 1.35 (6H, s), 1.58–1.79 (5H, m), 2.58 (1H, tt, *J*=3.4, 11.4 Hz), 3.71 (3H, s); ¹³C NMR: δ 21.7, 25.6, 30.2, 47.4, 52.2, 56.0, 174.3, 211.2; IR (neat) 2936, 1746, 1711, 1453, 1265, 1150, 993 cm⁻¹.

3.2.22. Methyl 3-cyclohexyl-2-ethyl-2-methyl-3oxopropanoate (**9b**)

Following the procedure for preparing **6a-B**, the reaction between methyl cyclohexanoate (142 mg, 1.0 mmol) and **5b** (452 mg, 2.4 mmol) gave the desired product **9b** (186 mg, 82%).

Colorless oil; ¹H NMR: δ 0.81 (3H, t, *J*=7.6 Hz), 1.16–1.47 (5H, m), 1.31 (3H, s), 1.58–1.78 (5H, m) 1.76 (1H, dq, *J*=7.6, 14.1 Hz), 1.96 (1H, dq, *J*=7.6, 14.1 Hz), 2.56 (1H, tt, *J*=3.4, 11.4 Hz), 3.71 (3H, s); ¹³C NMR: δ 8.6, 17.9, 25.6, 27.3, 29.9, 30.4, 47.5, 52.0, 60.4, 173.6, 211.1; IR (neat) 2936, 1744, 1709, 1453, 1244, 1148 cm⁻¹.

3.2.23. Methyl 3-cyclohexyl-2-hydroxy-2-methyl-3oxopropanoate (**9c**)

Following the procedure for preparing **6c**, the reaction between methyl cyclohexanoate (71 mg, 0.5 mmol) and **5c** (436 mg, 1.5 mmol) gave the desired product **9c** (76 mg, 71%).

Yellow oil; ¹H NMR: δ 1.12–1.48 (5H, m), 1.51–1.84 (5H, m), 1.58 (3H, s), 2.85 (1H, tt, *J*=11.4, 3.4 Hz), 3.77 (3H, s), 4.24 (1H, br s); ¹³C NMR: δ 21.8, 25.4, 25.4, 25.5, 29.4, 29.5, 45.0, 53.1, 80.8, 171.8, 210.0; IR (neat) 3474, 2934, 1720, 1450, 1265, 1149, 1114, 1059, 993 cm⁻¹.

3.2.24. Methyl 2,2-dimethyl-5-(2-methyl-1,3-dioxolane-2-yl)-3-(trimethylsiloxy)pent-3-enoate (**10a-A**) and methyl 2,2-dimethyl-5-(2-methyl-1,3-dioxolane-2-yl)-3-oxopentanoate (**10a-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between methyl 3-(2-methyl-1,3-dioxolane-2-yl)propanoate (174 mg, 1.0 mmol) and **5a** (418 mg, 2.4 mmol) gave the desired products **10a-A** (214 mg, 68%) and **10a-B** (63 mg, 20%).

Compound **10a-A**. Colorless oil; ¹H NMR: δ 0.18 (9H, s), 1.30 (3H, s), 1.32 (6H, s), 2.32 (2H, d, *J*=6.9 Hz), 3.65 (3H, s), 3.89–3.96 (4H, m), 4.73 (1H, t, *J*=6.9 Hz); ¹³C NMR: δ 0.9, 23.6, 24.4, 36.0, 48.5, 51.9, 64.7, 101.1, 110.0, 154.7, 176.2; IR (neat) 2982, 2882, 1738, 1254, 1136, 845 cm⁻¹.

Compound **10a-B**. Colorless oil; ¹H NMR: δ 1.30 (3H, s), 1.37 (6H, s), 1.93–1.98 (2H, m) 2.51–2.56 (2H, m), 3.71 (3H, s), 3.86–3.97 (4H, m); ¹³C NMR: δ 22.1, 23.8, 32.5, 32.7, 52.4, 55.6, 64.6, 109.2, 174.2, 207.6; IR (neat) 2982, 2882, 1738, 1254, 1136, 845 cm⁻¹.

3.2.25. Methyl 2-ethyl-2-methyl-5-(2-methyl-1,3-dioxolane-2-yl)-3-(trimethylsiloxy)pent-3-enoate (**10b-A**) and methyl 2-ethyl-2methyl-5-(2-methyl-1,3-dioxolane-2-yl)-3-oxopentanoate (**10b-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between methyl 3-(2-methyl-1,3-dioxolane-2-yl)propanoate (174 mg, 1.0 mmol) and **5b** (452 mg, 2.4 mmol) gave the desired products **10b-A** (259 mg, 78%) and **10b-B** (34 mg, 13%).

Compound **10b-A**. Colorless oil; ¹H NMR: δ 0.17 (9H, s), 0.81 (3H, t, *J*=7.6 Hz), 1.25 (3H, s), 1.30 (3H, s), 1.74 (1H, dq, *J*=7.6, 13.4 Hz), 1.80 (1H, dq, *J*=7.6, 13.4 Hz), 2.29 (1H, dd, *J*=6.5, 14.6 Hz), 2.38 (1H, dd, *J*=7.6, 14.6 Hz), 3.65 (3H, s), 3.92–3.95 (4H, m), 4.69 (1H, dd, *J*=6.5, 7.6 Hz); ¹³C NMR: δ 0.9, 8.8, 20.5, 23.7, 28.7, 36.0, 51.7, 52.6, 64.7, 102.2, 110.4, 153.5, 175.9; IR (neat) 2978, 2884, 1736, 1667, 1252, 1123, 849 cm⁻¹.

Compound **10b-B**. Colorless oil; ¹H NMR: δ 0.82 (3H, t, *J*=7.6 Hz), 1.30 (3H, s), 1.32 (3H, s), 1.81 (1H, dq, *J*=7.6, 14.1 Hz), 1.90–2.02 (2H, m), 1.95 (1H, dq, *J*=7.6, 14.1 Hz), 2.42–2.61 (2H, m), 3.65 (3H, s), 3.86–3.97 (4H, m); ¹³C NMR: δ 8.6, 18.4, 23.9, 27.8, 32.7, 33.0, 52.3, 60.0, 64.6, 109.2, 173.6, 207.4; IR (neat) 2982, 2883, 1743, 1715, 1246, 1150, 1055 cm⁻¹.

3.2.26. Methyl 2-hydroxy-2-methyl-5-(2-methyl-1,3-dioxolane-2yl)-3-oxopentanoate (**10c**)

Following the procedure for preparing **6c**, the reaction between methyl 3-(2-methyl-1,3-dioxolane-2-yl)propanoate (87 mg, 0.5 mmol) and **5c** (436 mg, 1.5 mmol) gave the desired product **10c** (92 mg, 76%).

Pale yellow oil; ¹H NMR: δ 1.30 (3H, s), 1.59 (3H, s), 1.99 (2H, t, *J*=7.2 Hz), 2.63 (1H, dt, *J*=17.9, 7.2 Hz), 2.73 (1H, dt, *J*=17.9, 7.2 Hz), 3.76 (3H, s), 3.82–3.96 (4H, m), 4.24 (1H, br s); ¹³C NMR: δ 22.1, 23.8, 31.0, 32.6, 53.3, 64.6, 81.1, 109.0, 171.9, 206.9; IR (neat) 3470, 2986, 2957, 1724, 1452, 1381, 1261, 1149, 1045, 862 cm⁻¹.

3.2.27. Methyl 2,2-dimethyl-11-(oxirane-2-yl)-3-(trimethylsiloxy)undec-3-enoate (**11a-A**) and methyl 2,2-dimethyl-11-(oxirane-2-yl)-3-oxoundecanoate (**11a-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between methyl 9-(oxiran-2-yl)nonanoate (214 mg, 1.0 mmol) and **5a** (418 mg, 2.4 mmol) gave the desired products **11a-A** (124 mg, 35%) and **11a-B** (137 mg, 48%).

Compound **11a-A**. Colorless oil; ¹H NMR: δ 0.17 (9H, s), 1.22–1.61 (12H, m), 1.30 (6H, s), 1.93–2.00 (2H, m), 2.46 (1H, dd, *J*=5.2, 2.8 Hz), 2.74 (1H, dd, *J*=5.2, 4.1 Hz), 2.87–2.93 (1H, m), 3.66 (3H, m), 4.59 (1H, t, *J*=6.9 Hz); ¹³C NMR: δ 0.8, 24.4, 25.9, 26.0, 29.3, 29.4, 29.6,

32.5, 47.1, 48.4, 51.9, 52.4, 106.5, 152.6, 176.5; IR (neat) 2930, 2856, 1738, 1666, 1460, 1253, 1155, 1099, 898, 848 cm⁻¹.

Compound **11a-B**. Colorless oil; ¹H NMR: δ 1.21–1.60 (14H, m), 1.35 (6H, s), 2.42 (2H, t, *J*=7.2 Hz), 2.45 (1H, dd, *J*=2.8, 5.2 Hz), 2.74 (1H, dd, *J*=3.8, 5.2 Hz), 2.85–2.92 (1H, m), 3.71 (3H, s); ¹³C NMR: δ 21.9, 23.8, 25.9, 29.1, 29.3, 29.3, 32.5, 37.9, 47.1, 52.4, 55.6, 174.3, 208.1; IR (neat) 2984, 2930, 2856, 1745, 1714, 1466, 1267, 1194, 1149 cm⁻¹.

3.2.28. Methyl 2-ethyl-2-methyl-11-(oxirane-2-yl)-3-(trimethylsiloxy)undec-3-enoate (**11b-A**) and methyl 2-ethyl-2methyl-11-(oxirane-2-yl)-3-oxoundecanoate (**11b-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between methyl 9-(oxiran-2-yl)nonanoate (214 mg, 1.0 mmol) and **5b** (452 mg, 2.4 mmol) gave the desired products **11b-A** (92 mg, 25%) and **11b-B** (200 mg, 67%).

Compound **11b-A**. Colorless oil; ¹H NMR: δ 0.16 (9H, s), 0.80 (3H, t, *J*=7.6 Hz), 1.23 (3H, s), 1.23–1.57 (12H, m), 1.70 (1H, dq, *J*=13.4, 7.6 Hz), 1.78 (1H, dq, *J*=13.4, 7.6 Hz), 1.87–2.06 (2H, m), 2.46 (1H, dd, *J*=5.2, 2.8 Hz), 2.74 (1H, dd, *J*=5.2, 4.0 Hz), 2.86–2.93 (1H, m), 3.65 (3H, s), 4.55 (1H, t, *J*=6.9 Hz); ¹³C NMR: δ 0.9, 8.8, 20.5, 25.9, 26.1, 28.7, 29.2, 29.4, 29.7, 32.5, 47.1, 51.7, 52.4, 52.5, 107.4, 151.4, 151.5, 176.0; IR (neat) 2928, 2856, 1736, 1664, 1460, 1350, 1251, 1149, 941, 850, 756 cm⁻¹.

Compound **11b-B**. Colorless oil; ¹H NMR: δ 0.82 (3H, t, *J*=7.6 Hz), 1.16–1.62 (14H, m), 1.30 (3H, s), 1.80 (1H, dq, *J*=14.1, 7.6 Hz), 1.94 (1H, dq, *J*=14.1, 7.6 Hz), 2.39 (1H, t, *J*=7.2 Hz), 2.31–2.48 (1H, m), 2.45 (1H, dd, *J*=5.2, 2.8 Hz), 2.74 (1H, dd, *J*=5.2, 4.1 Hz), 3.71 (3H, s); ¹³C NMR: δ 8.6, 18.3, 23.8, 25.9, 27.7, 29.0, 29.3, 29.3, 32.4, 38.3, 47.1, 52.2, 52.3, 59.9, 173.7, 207.9; IR (neat) 2930, 2856, 1741, 1712, 1460, 1246, 1147, 1057, 835 cm⁻¹.

3.2.29. 10-tert-Butyl 1-methyl 2,2-dimethyl-3-(trimethylsiloxy)dec-3-enedioate (**12a-A**) and 10-tert-butyl 1-methyl 2,2-dimethyl-3oxodecanedioate (**12a-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between 8-*tert*-butyl 1-methyl octanoate (244 mg, 1.0 mmol) and **5a** (418 mg, 2.4 mmol) gave the desired products **12a-A** (168 mg, 44%) and **12a-B** (129 mg, 41%).

Compound **12a-A**. Colorless oil; ¹H NMR: δ 0.17 (9H, s), 1.23–1.37 (4H, m), 1.30 (6H, s), 1.44 (9H, s), 1.50–1.65 (2H, m), 1.94–2.01 (2H, m), 2.20 (2H, t, *J*=7.9 Hz), 3.66 (3H, s), 4.59 (1H, t, *J*=6.9 Hz); ¹³C NMR: δ 0.8, 24.4, 25.0, 25.9, 28.1, 28.8, 29.4, 35.6, 48.3, 51.8, 79.9, 106.2, 152.7, 173.2, 176.4; IR (neat) 2978, 2935, 2858, 1736, 1666, 1253, 1155, 846 cm⁻¹.

Compound **12a-B**. Colorless oil; ¹H NMR: δ 1.18–1.38 (4H, m), 1.35 (6H, s), 1.43 (9H, s), 1.49–1.64 (4H, m), 2.19 (2H, t, *J*=7.6 Hz), 2.42 (2H, t, *J*=7.2 Hz), 3.72 (3H, s); ¹³C NMR: δ 21.9, 23.6, 24.8, 28.0, 28.7, 28.8, 35.4, 37.7, 52.3, 55.5, 79.9, 173.1, 174.2, 207.9; IR (neat) 2980, 2937, 2864, 1712, 1460, 1367, 1259, 1157, 848, 734 cm⁻¹.

3.2.30. 10-tert-Butyl 1-methyl 2-ethyl-2-methyl-3-(trimethylsiloxy)dec-3-enedioate (**12b-A**) and 10-tert-butyl 1-methyl 2-ethyl-2-methyl-3-oxodecanedioate (**12b-B**)

Following the procedure for preparing **6a-A** and **6a-B**, the reaction between 8-*tert*-butyl 1-methyl octanoate (44 mg, 1.0 mmol) and **5b** (452 mg, 2.4 mmol) gave the desired products **12b-A** (195 mg, 49%) and **12b-B** (135 mg, 41%).

Compound **12b-A**. Colorless oil; ¹H NMR: δ 0.16 (9H, s), 0.79 (3H, t, *J*=7.6 Hz), 1.22 (3H, s), 1.25–1.39 (4H, m), 1.43 (9H, s), 1.50–1.65 (2H, m), 1.69 (1H, dq, *J*=13.8, 7.6 Hz), 1.77 (1H, dq, *J*=13.8, 7.6 Hz), 1.87–2.06 (2H, m), 2.19 (2H, t, *J*=7.2 Hz), 3.65 (3H, s), 4.55 (1H, t, *J*=7.2 Hz); ¹³C NMR: δ 0.9, 8.8, 20.5, 25.0, 25.9, 28.1, 28.7, 28.8, 29.4, 35.6, 51.7, 52.5, 79.9, 107.2, 151.6, 173.2, 176.0; IR (neat) 2976, 2938, 1732, 1664, 1460, 1251, 1152, 1119, 844 cm⁻¹.

Compound **12b-B**. Colorless oil; ¹H NMR: δ 0.81 (3H, t, *J*=7.6 Hz), 1.18–1.34 (4H, m), 1.30 (3H, s), 1.43 (9H, s), 1.49–1.62 (4H, m), 1.79 (1H, dq, *J*=14.1, 7.6 Hz), 1.94 (1H, dq, *J*=14.1, 7.6 Hz), 2.18 (2H, t, *J*=7.6 Hz), 2.37 (1H, dt, *J*=19.6, 7.2 Hz), 2.43 (1H, dt, *J*=19.6, 7.2 Hz), 3.71 (3H, s); ¹³C NMR: δ 8.6, 18.3, 23.6, 24.9, 27.7, 28.1, 28.8, 28.8, 35.5, 38.2, 52.2, 59.9, 79.9, 173.1, 173.7, 207.8; IR (neat) 2969, 2946, 1716, 1460, 1367, 1248, 1153 cm⁻¹.

3.2.31. Methyl 3-[3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropyl]-2,2-dimethyl-3-oxopropnoate (**13a-B**)

Following the procedure for preparing **6a-B**, the reaction between methyl 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate (223 mg, 1.0 mmol) and **5a** (418 mg, 2.4 mmol) gave the desired product **13a-B** (261 mg, 89%).

Diastereomixture (ca. *trans*/cis 3:2); colorless oil; ¹H NMR: δ 1.11 (trans, 3H×3/5, s), 1.13 (cis, 3H×2/5, s), 1.18 (trans, 3H×3/5, s), 1.23 (cis, 3H×2/5, s), 1.34 (cis, 3H×2/5, s), 1.35 (trans, 3H×3/5, s), 1.36 (cis, 3H×2/5, s), 1.38 (trans, 3H×3/5, s), 1.36 (trans, 1H×3/5, d, *J*=5.5 Hz), 2.06 (cis, 1H×2/5, d, *J*=8.26 Hz), 2.12 (cis, 1H×2/5, dd, *J*=8.3, 8.3 Hz), 2.40 (trans, 1H×3/5, dd, *J*=5.5, 7.9 Hz), 3.73 (3H, s), 5.62 (trans, 1H×3/5, d, *J*=7.9 Hz), 6.32 (cis, 1H×2/5, d, *J*=8.3 Hz); ¹³C NMR: δ 14.3, 19.2, 21.4, 21.7, 21.8, 22.5, 28.4, 30.8, 32.6, 33.6, 35.7, 36.7, 39.7, 52.5, 55.8, 56.4, 120.5, 122.0, 124.7, 126.7, 174.1, 174.2, 203.0, 203.7; IR (neat) 2980, 2955, 2937, 1741, 1699, 1462, 1386, 1263, 1149, 1101, 918, 881 cm⁻¹.

3.2.32. Methyl 2-[3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropnecarbonyl]-2-methylbutanoate (**13b-B**)

Following the procedure for preparing **6a-B**, the reaction between methyl 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate (223 mg, 1.0 mmol) and **5b** (452 mg, 2.4 mmol) gave the desired product **13b-B** (261 mg, 89%).

Diastereomixture (ca. major/minor 3:2); colorless oil; ¹H NMR: δ 0.76–0.90 (3H×3/5, m, +3H×2/5, m), 1.08–1.23 (6H×3/5, m, +6H×2/5, m), 1.30–1.38 (3H×3/5, m, +3H×2/5, m), 1.71–2.04 (1H×3/5, m, +2H×3/5, m, +2H×2/5, m), 2.05–2.17 (1H×2/5, m, +1H×2/5, m), 2.34–2.45 (1H×3/5, m), 3.73 (3H, s), 5.62 (1H×3/5, d, *J*=7.91 Hz), 6.25–6.35 (1H×2/5, m); ¹³C NMR: δ 8.5, 8.6; 14.3, 17.8, 17.9, 18.2, 19.1, 22.5, 22.6, 27.5, 27.7, 28.4, 30.8, 30.8, 32.5, 32.7, 33.6, 34.0, 35.6, 35.7, 36.9, 37.0, 39.8, 40.0, 52.3, 60.1, 60.3, 60.6, 60.7, 120.4, 120.4, 122.2, 124.7, 126.8, 173.5, 173.6, 173.6, 173.7, 202.8, 203.3, 203.5, 203.7; IR (neat) 2955, 2881, 1739, 1699, 1458, 1244, 1149, 1099, 1051, 914, 879 cm⁻¹.

3.2.33. Methyl 5-(1H-indol-3-yl)-2,2-dimethyl-3-oxopentanoate (14)

Following the procedure for preparing **6a-B**, the reaction between 3-[(1-*tert*-butyldimethylsilyl)indol-3-yl]propanoate (318 mg, 1.0 mmol) and **5a** (418 mg, 2.4 mmol) gave the desired crude product, which was added to a stirred solution of TBAF (2.0 mmol) in THF (3.0 mL) at 0–5 °C, followed by being stirred at 20–25 °C for 1 h. A similar work up gave the desired product **14** (183 mg, 67%).

Yellow oil; ¹H NMR: δ 1.33 (6H, s), 2.85 (2H, d, J=7.2 Hz), 3.07 (2H, d, J=7.2 Hz), 3.57 (3H, s), 6.98 (1H, d, J=2.0 Hz), 7.09–7.21 (2H, m), 7.35 (1H, d, J=7.9 Hz), 7.56 (1H, d, J=7.91 Hz), 7.91–8.06 (1H, br); ¹³C NMR: δ 14.2, 19.6, 21.8, 38.8, 52.3, 55.6, 60.4, 111.1, 115.1, 118.6, 119.3, 121.6, 122.0, 127.1, 136.3, 174.1, 207.6; IR (neat) 3412, 2988, 2951, 1711, 1458, 1271, 1149, 1068, 744 cm⁻¹.

3.2.34. Methyl 4-(benzyloxy)-2,2-dimethyl-3-(trimethylsiloxy)-3-butenoate (**15**)

Following the procedure for preparing **6a-A**, the reaction between methyl 2-(benzyloxy)acetate (180 mg, 1.0 mmol) and **5a** (418 mg, 2.4 mmol) gave the desired product **15** (268 mg, 83%).

(Z/E=95:5); colorless oil; ¹H NMR: δ 0.11 (9H×19/20, s, Z), 0.17 (9H×1/20, s, E), 1.27 (6H, s), 3.66 (3H, s), 4.58 (2H×1/20, s, E), 4.73

5606

 $(2H\times19/20, s, Z)$, 5.73 $(1H\times19/20, s, Z)$, 5.84 $(1H\times1/20, s, E)$, 7.21–7.40 (5H, m); ¹³C NMR: δ 0.6, 23.5, 46.3, 51.9, 73.9, 127.2, 127.6, 127.9, 128.3, 137.2, 139.0, 176.3; IR (neat) 2978, 1738, 1157, 848, 752 cm⁻¹.

3.2.35. (S)-Methyl 4-(dibenzylamino)-2,2-dimethyl-3oxopentanoate (**16**)

Following the procedure for preparing **6a-B**, the reaction between methyl (*S*)-methyl 2-(dibenzylamino)propanoate (142 mg, 0.5 mmol) and **5a** (209 mg, 1.2 mmol) at 0–5 °C for 30 min gave the desired product **16** (150 mg, 85%).

HPLC analysis [flow rate 0.30 mL /min, solvent: hexane/2-propanol=99:1, t_R (racemic)=19.99 and 20.70 min, t_R (**16**)= 19.27 min] 95% ee. Pale yellow oil; $[\alpha]_D^{23}$ -1.3 (*c* 1.16, CHCl₃); ¹H NMR: δ 1.20 (3H, d, *J*=6.9 Hz), 1.26 (3H, s), 1.28 (3H, s), 3.53 (3H, s), 3.55 (1H, d, *J*=13.8 Hz), 3.83 (1H, d, *J*=13.8 Hz), 3.90 (1H, q, *J*=6.9 Hz), 7.20–7.37 (10H, m); ¹³C NMR: δ 10.4, 22.6, 22.7, 52.1, 54.1, 55.2, 57.4, 127.0, 128.2, 129.0, 139.3, 173.9, 209.1; IR (neat) 3028, 2982, 2939, 2841, 1743, 1709, 1454, 1383, 1267, 1151, 981 cm⁻¹.

3.2.36. (S)-Methyl 4-(tert-butyldiphenylsiloxy)-2,2-dimethyl-3-oxopentanoate (**17**)

Following the procedure for preparing **6a-B**, the reaction between methyl (*S*)-methyl 2-(*tert*-butyldiphenylsiloxy)propanoate (171 mg, 0.5 mmol) and **5a** (209 mg, 1.2 mmol) at 0-5 °C for 30 min gave the desired product **17** (184 mg, 89%).

HPLC analysis [flow rate 0.50 mL/min, solvent: hexane/2-propanol=99.5:0.5, $t_{\rm R}$ (racemic)=11.71 and 12.64 min, $t_{\rm R}$ (**17**)=11.57 and 12.45 min] 97% ee. Colorless oil; $[\alpha]_{\rm D}^{24}$ +21.7 (*c* 1.11, CHCl₃); ¹H NMR: δ 1.07 (9H, s), 1.18 (3H, d, *J*=6.9 Hz), 1.33 (3H, s), 1.39 (3H, s)3.67 (3H, s), 4.46 (1H, q, *J*=6.9 Hz), 7.32–7.48 (6H, m), 7.60–7.73 (4H, m); ¹³C NMR: δ 19.2, 21.8, 22.4, 22.7, 26.9, 52.1, 53.1, 74.5, 127.5, 127.8, 129.8, 130.0, 132.5, 133.8, 135.9, 135.9, 173.7, 209.6; IR (neat) 3073, 3051, 2936, 2893, 2860, 1750, 1711, 1589, 1473, 1383, 1263, 1190 cm⁻¹.

3.2.37. Mukaiyama aldol reaction (Table 5, method A): general procedure

TiCl₄ (40 μ L, 0.36 mmol) was added to a stirred solution of an enol silyl ether (0.30 mmol) and an aldehyde (0.36 mmol) in CH₂Cl₂ (0.9 mL) at -45 °C under an Ar atmosphere, followed by being stirred at same temperature for 1 h. Water was added to the reaction mixture, which was extracted with AcOEt. The organic phase was washed with water, brine, dried (Na₂SO₄), and concentrated. The obtained crude product was purified by silica gel column chromatography to give the desired product.

3.2.38. Ti-direct aldol reaction (Table 5, method B)

TiCl₄ (67 μ L, 0.60 mmol) and Bu₃N (130 mg, 0.70 mmol) were successively added to a stirred solution of a β -ketoester (0.50 mmol) in CH₂Cl₂ (1.5 mL) at 0–5 °C under an Ar atmosphere, followed by being stirred at the same temperature for 0.5 h. Aldehyde (0.60 mmol) was added to the mixture at the same temperature. After stirring for 2 h, water was added to the mixture, which was extracted with AcOEt. The organic phase was washed with water, brine, dried (Na₂SO₄), and concentrated. The obtained crude product was purified by silica gel column chromatography to give the desired product.

3.2.39. Methyl 4-(hydroxy(phenyl)methyl)-2,2-dimethyl-3oxododecanoate (**23**)

Colorless oil; ¹H NMR: δ 0.77–0.97 (1H, m), 0.85 (3H, t, *J*=6.9 Hz), 0.99–1.53 (12H, m), 1.33 (3H, s), 1.35 (3H, s), 1.53–1.75 (1H, m), 3.08–3.26 (1H, m), 3.73 (3H, s), 4.94 (1H, d, *J*=3.4 Hz), 7.20–7.40 (5H, m); ¹³C NMR: δ 14.0, 21.7, 21.9, 22.0, 22.6, 26.3, 27.7, 29.1, 29.2, 29.8, 31.7, 52.5, 53.5, 54.0, 56.7, 73.0, 75.2, 125.9, 126.3, 127.4, 127.8, 128.3, 128.4, 141.6, 173.4, 212.7; IR (neat) 3520, 2928, 1736, 1703, 1265, 1030, 702 cm⁻¹.

3.2.40. Methyl 4-(1-hydroxyhexyl)-2,2-dimethyl-3oxododecanoate (24)

Colorless oil; ¹H NMR: δ 0.78 (6H, m), 1.10–1.73 (22H, m), 1.40 (6H, s), 2.20–2.64 (1H, br s), 2.78–2.95 (1H, m), 3.62–3.76 (1H, m) 3.72 (3H, s); ¹³C NMR: δ 13.99, 14.03, 22.00, 22.21, 22.27, 22.31, 22.54, 22.60, 25.73, 25.90, 26.23, 27.30, 28.33, 29.19, 29.33, 29.59, 29.73, 30.00, 31.70, 31.77, 34.39, 35.73, 51.60, 51.87, 52.35, 56.65, 56.90, 71.62, 72.02, 173.46, 173.50, 213.06, 213.79; IR (neat) 3524, 2928, 1739, 1703, 1466, 1149 cm⁻¹.

3.2.41. Methyl 4-(benzyloxy)-5-hydroxy-2,2-dimethyl-3-oxo-5-phenylpentanoate (**25**)

syn/anti 25:75; colorless oil; ¹H NMR: δ 1.19 (*anti*, 0.75×3H, s), 1.24 (*syn*, 0.25×3H, s), 1.30 (*syn*, 0.25×3H, s), 1.31 (*anti*, 0.75×3H, s), 3.37 (*anti*, 0.75×3H, s), 3.42 (*syn*, 0.25×3H), 3.99 (*syn*, 0.25×1H, d, *J*=10.7 Hz), 4.09 (*anti*, 0.75×1H, d, *J*=10.7 Hz), 4.22 (*anti*, 0.75×1H, d, *J*=10.7 Hz), 4.22 (*anti*, 0.75×1H, d, *J*=10.7 Hz), 4.34 (*syn*, 0.25×1H, d, *J*=6.2 Hz), 4.36 (*syn*, 0.25×1H, d, *J*=2.8 Hz), 5.06 (*anti*, 0.75×1H, d, *J*=6.2 Hz), 5.25 (*syn*, 0.25×1H, d, *J*=2.8 Hz), 7.01–7.17 (2H, m), 7.19–7.45 (8H, m); ¹³C NMR: δ 20.9, 21.1, 22.2, 22.4, 51.8, 52.0, 53.3, 53.5, 73.1, 74.2, 74.5, 75.8, 86.2, 87.3, 126.1, 127.5, 127.5, 127.6, 127.9, 128.1, 128.1, 128.3, 136.6, 136.9, 139.7, 140.8, 173.3, 173.8, 208.3, 210.1; IR (neat) 3499, 2949, 1749, 1714, 1454, 1151, 702 cm⁻¹.

Acknowledgements

This research was partially supported by Grant-in-Aids for Scientific Research on Basic Areas (B) '18350056', Priority Areas (A) '17035087' and '18037068', and Exploratory Research '17655045' from MEXT. We also thank Nissan Chemical Industries Ltd for a helpful discussion.

References and notes

- (a) Smith, M. B.; March, J. Advanced Organic Chemistry, 6th ed.; Wiley: New York, NY, 2007; p 1351; (b) Gennari, C. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 630–657.
- 2. Tanabe, Y.; Misaki, T.; Kurihara, M.; Iida, A. Chem. Commun. 2002, 1628.
- Okabayashi, T.; Iida, A.; Takai, K.; Nawate, Y.; Misaki, T.; Tanabe, Y. J. Org. Chem. 2007, 72, 8142.
- Iida, A.; Takai, K.; Okabayashi, Y.; Misaki, T.; Tanabe, Y. Chem. Commun. 2005, 3171.
- (a) Ref. 1a, p 1132; (b) Fukuyama, T.; Lin, S. C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050; (c) Tokuyama, H.; Yokoyama, S.; Lin, S.; Lin, L; Fukuyama, T. Tetrahedron Lett. 2002, 8, 1121; (d) Tokuyama, H.; Miyazaki, T.; Yokoyama, S.; Fukuyama, T. Synlett 2003, 1512.
- Commercially available. Compared with ether solvents such as THF, dioxolane, DME, etc. there are several advantages for process chemistry: Watanabe, K.; Yamagiwa, N.; Torisawa, Y. Org. Process Res. Dev. 2007, 11, 251.
- 7. Langer, P. Synthesis 2002, 441.
- Chan, T.-H.; Brownbridge, P. J. Chem. Soc., Chem. Commun. **1979**, 578; (b) Danishefsky, S.; Harvey, D. F.; Quallich, G.; Uang, B. J. J. Org. Chem. **1984**, 49, 393; (c) Hagiwara, H.; Kimura, K.; Uda, H. J. Chem. Soc., Chem. Commun. **1986**, 860; (d) Enders, D.; Burkamp, F.; Runsink, J. Chem. Commun. **1996**, 609; (e) Evans, D. A.; Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. **1996**, 118, 5814; (f) Krüger, J.; Carreira, E. M. J. Am. Chem. Soc. **1998**, 120, 837; (g) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. **1999**, 121, 669.
- (a) Langer, P.; Köhler, V. Org. Lett. 2000, 1597; (b) Chan, T. H.; Brook, M. A. Tetrahedron Lett. 1985, 26, 294; (c) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 3534; (d) Kan, G. J.; Chan, T. H. J. Org. Chem. 1985, 50, 452.
- (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. **1980**, 3534; (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. **1983**, 61, 688; (c) Lee, S. D.; Chan, T. H. Tetrahedron **1984**, 40, 3611.
- 11. (a) Molander, G. A.; Siedem, C. S. J. Org. Chem. **1995**, 60, 130; (b) Molander, G. A.; Bessières, B.; Eastwood, P. R.; Nool, B. C. J. Org. Chem. **1999**, 64, 4124.
- (a) Langer, P.; Eckardt, T. Angew. Chem., Int. Ed. 2000, 39, 4343; (b) Langer, P.; Freifeld, I.; Holtz, E. Synlett 2000, 501; (c) Langer, P.; Freifeld, I. Chem.—Eur. J. 2001, 7, 565; (d) Langer, P.; Armbrust, H.; Eckardt, T.; Magull. Chem. Eur. J. 2002, 8, 1443.
- (a) Langer, P.; Krummel, T. Chem. Commun. 2000, 967; (b) Langer, P.; Stoll, M. Angew. Chem., Int. Ed. 1999, 38, 1803; (c) Langer, P.; Saleh, N. N. R. Org. Lett. 2000, 3333; (d) Langer, P.; Schneider, T.; Stoll, M. Chem.—Eur. J. 2000, 6, 3204; (e) Langer, P.; Eckardt, T. Synlett 2000, 844; (f) Langer, P.; Eckardt, T.; Schneider, T.; Göbel, C.; Herbst-Irmer, R. J. Org. Chem. 2001, 66, 2222.

- 14. (a) Chan, T. H.; Prasad, C. V. C. J. Org. Chem. 1987, 52, 110; (b) Chan, T. H.; Prasad, C. V. C. J. Org. Chem. 1987, 52, 120.
- (a) Krohn, K.; Ostermeyer, H.-H.; Tolkiehn, K. Chem. Ber. **1979**, 112, 2640; (b) 15 Roberge, G.; Brassard, P. Synthesis 1981, 381; (c) Roberge, G.; Brassard, P. J. Org. Chem. 1981, 46, 4146; (d) Cameron, D. W.; Conn, C.; Feutrill, G. I. Aust. J. Chem. 1981, 34, 1945; (e) O'Malley, G. J.; Murphy, R. A., Jr.; Cava, M. P. J. Org. Chem. 1985, 50, 5533; (f) Roberge, G.; Brassard, P. J. Org. Chem. 1981, 46, 4161; (g) Sher, M.: Ahmed, Z.; Rashid, M. A.; Fischer, C.; Spannenberg, A.; Langer, P. Tetrahedron 2007. 63. 4929; (h) Yawer, M. A.; Hussain, I.; Reim, S.; Ahmed, Z.; Ullah., E.; Igbal, I.; Fischer, C.; Reinke, H.; Gorls, H.; Langer, P. *Tetrahedron* **2007**, 63, 12562.
- 16 (a) Reim, S.: Nguyen, V. T.-H.: Albrecht, U.: Langer, P. Tetrahedron Lett. 2005, 46. 8423; (b) Rahn, T.; Nguyen, V. T. H.; Dang, T. H. T.; Ahmed, Z.; Methling, K.; Lalk, M.; Fischer, C.; Spannenberg, A.; Langer, P. J. Org. Chem. **2007**, 72, 2957. 17. (a) Villano, R.; Acocella, M. R.; Massa, A.; Palombi, L.; Scettri, A. *Tetrahedron*
- 2007, 63, 12317; (b) Rashid, M. A.; Rasool, N.; Adeel, M.; Reinke, H.; Fischer, C.; Langer, P. Tetrahedron 2008, 64. 3782.
- Soriente, A.; De Rosa, M.; Stanzione, M.; Illano, R.; Scettri, A. Tetrahedron: 18 Asymmetry 2001, 12, 959. 19
- (a) Endo, A. J. Lipid Res. 1992, 33, 1569; (b) Roth, B. D.; Ortwine, D. F.; Hoefle, M. L.; Stratton, C. D.; Wilson, M. W.; Newton, R. S. J. Med. Chem. 1990, 33, 21.
- 20. Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. **1993**, 115, 830.
- 21. (a) Weiler, L. J. Am. Chem. Soc. 1970, 92, 6702; (b) Huckin, S. N.; Weiler, L. Can. J. Chem. 1974, 52, 2157.

- 22. (a) Tanabe, Y. Bull. Chem. Soc. Jpn. 1989, 62, 1917; (b) Tanabe, Y.; Hamasaki, R.; Funakoshi, S. Chem. Commun. 2001, 1674; (c) Tanabe, Y.; Manta, N.; Nagase, R.; Misaki, T.; Nishii, Y.; Sunagawa, M.; Sasaki, A. Adv. Synth. Catal. 2003, 345, 967; (d) Misaki, T.; Nagase, R.; Matsumoto, K.; Tanabe, Y. J. Am. Chem. Soc. 2005, 127, 2854; (e) lida, A.; Nakazawa, S.; Okabayashi, T.; Horii, A.; Misaki, T.; Tanabe, Y. Org. Lett. 2006, 8, 5215; (f) lida, A.; Nakazawa, S.; Nakatsuji, H.; Misaki, T.; Tanabe, Y. Chem. Lett. 2007, 48.
- 23. lida, A.; Osada, J.; Nagase, R.; Misaki, T.; Tanabe, T. Org. Lett. 2007, 9, 1859.
- 24. (a) Tanabe, Y.; Mitarai, K.; Higashi, T.; Misaki, T.; Nishii, Y. Chem. Commun. 2002, 2542; (b) Tanabe, Y.; Matsumoto, N.; Higashi, T.; Misaki, T.; Itoh, T.; Yamamoto, M.; Mitarai, K.; Nishii, Y. Tetrahedron 2002, 58, 8269 (Symposium); (c) Katayama, M.; Nagase, R.; Mitarai, K.; Misaki, T.; Tanabe, Y. Synlett **2006**, 129; (d) Nagase, R.; Matsumoto, N.; Hosomi, K.; Higashi, T.; Funakoshi, S.; Misaki, T.; Tanabe, Y. Org. Biomol. Chem. **2007**, 7, 151; (e) Nagase, R.; Katayama, M.; Mura, H.; Matsuo, N.; Tanabe, Y. Tetrahedron Lett. 2008, 49, 4509.
- 25. Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322; A stereochemical model for merged 1,2- and 1,3-asymmetric induction in Mukaiyama aldol addition using $BF_3 \cdot OEt_2$ is discussed. We consider that this linear TS model is significantly different from the present case.
- 26. Mukaiyama, T.; Leon, P.; Kobayashi, S. Chem. Lett. 1988, 1495.
- Mukai, C.; Kataoka, O.; Hanaoka, M. J. Org. Chem. 1993, 58, 2946.
 Fukuzumi, S.; Fujita, M.; Otera, J.; Fujita, Y. J. Am. Chem. Soc. 1992, 114, 10271.
- 29. Shchepin, V. V.; Efremov, D. I.; Desyatkov, D. A. Zh. Obshch. Khim. 1993, 63, 1283.